http://www.scribd.com/full/63627808?access_key=key-8dlnz1hqjhrnxn05s1
Practica De Impresoras - KARINA MORENO.
martes, 30 de agosto de 2011
domingo, 21 de agosto de 2011
IMPRESORAS
IMPRESORAS:
El dispositivo de impresión consta de un tambor fotoconductor unido a un depósito de tóner y un haz láser que es modulado y proyectado a través de un disco especular hacia el tambor fotoconductor. El giro del disco provoca un barrido del haz sobre la generatriz del tambor. Las zonas del tambor sobre las que incide el haz quedan ionizadas y, cuando esas zonas (mediante el giro del tambor) pasan por el depósito del tóner atraen el polvo ionizado de éste. Posteriormente el tambor entra en contacto con el papel, impregnando de polvo las zonas correspondientes. Para finalizar se fija la tinta al papel mediante una doble acción de presión y calor.
Una impresora es un periférico de ordenador que permite producir una copia permanente de textos o gráficos de documentos almacenados en formato electrónico, imprimiéndolos en medios físicos, normalmente en papel o transparencias, utilizando cartuchos de tinta o tecnologíaláser.
Muchas impresoras son usadas como periféricos, y están permanentemente unidas al ordenador por un cable. Otras impresoras, llamadas impresoras de red, tienen una interfaz de red interno (típicamente wireless o ethernet), y que puede servir como un dispositivo para imprimir en papel algún documento para cualquier usuario de la red.
IMPRESORA INYECCION DE TINTA:
La impresión de inyección de tinta, como la impresión láser, es un método sin contacto del cabezal con el papel, que se inventó mucho antes de sacar a la venta otras formas menos avanzadas, por el hecho de falta de investigación y experimentación.
La tinta es emitida por boquillas que se encuentran en el cabezal de impresión. El cabezal de impresión recorre la página en franjas horizontales, usando un motor para moverse lateralmente, y otro para pasar el papel en pasos verticales. Una franja de papel es impresa, entonces el papel se mueve, listo para una nueva franja. Para acelerar el proceso, la cabeza impresora no imprime sólo una simple línea de píxeles en cada pasada, sino también una línea vertical de píxeles a la vez. La tinta se obtiene de unos cartuchos reemplazables.
IMPRESORA LASER:
IMPRESORA MATRIZ DE PUNTOS:
Una impresora matricial o impresora de matriz de puntos es un tipo de impresora con una cabeza de impresión que se desplaza de izquierda a derecha sobre la página, imprimiendo por impacto, oprimiendo una cinta de tinta contra el papel, de forma similar al funcionamiento de una máquina de escribir. Al contrario que las máquinas de escribir o impresoras de margarita, las letras son obtenidas por selección de puntos de una matriz, y por tanto es posible producir distintos tipos de letra, y gráficos en general. Puesto que la impresión requiere presión mecánica, estas impresoras pueden crear copias carbón. Esta tecnología fue comercializada en primer lugar por Digital Equipment Corporation.
UNIDAD DE CD
UNIDAD DE CD:
Según su capacidad de regrabado:
Según su número de capas o caras:
Estos dispositivos realizan las operaciones de lectura o escritura de los medios o soportes donde se almacenan o guardan, lógica y físicamente, los archivos de un sistema informático.
UNIDAD DE CD-ROM
La unidad de CD-ROM permite utilizar discos ópticos de una mayor capacidad que los disquetes de 3,5 pulgadas: hasta 700 MB. Ésta es su principal ventaja, pues los CD-ROM se han convertido en el estándar para distribuir sistemas operativos, aplicaciones, etc.El uso de estas unidades está muy extendido, ya que también permiten leer los discos compactos de audio.Para introducir un disco, en la mayoría de las unidades hay que pulsar un botón para que salga una especie de bandeja donde se deposita el CD-ROM. Pulsando nuevamente el botón, la bandeja se introduce.
UNIDAD DE CD-RW:
Una regrabadora puede grabar y regrabar discos compactos. Las características básicas de estas unidades son la velocidad de lectura, de grabación y de regrabación. En los discos regrabables es normalmente menor que en los discos que sólo pueden ser grabados una vez. Las regrabadoras que trabajan a 8X, 16X, 20X, 24X, etc., permiten grabar los 650, 700 o más megabytes (hasta 900 MB) de un disco compacto en unos pocos minutos. Es habitual observar tres datos de velocidad, según la expresión ax bx cx (a:velocidad de lectura; b: velocidad de grabación; c: velocidad de regrabación).
UNIDAD DE DVD:
Es un disco óptico de almacenamiento de datos cuyo estándar surgió en 1995. Sus siglas corresponden con Digital Versatile Disc1 en inglés (disco versátil digital traducido al español). En sus inicios, la v intermedia hacía referencia a video (digital videodisk), debido a su desarrollo como reemplazo del formato VHS para la distribución de vídeo a los hogares.
Tipos de DVD:
Los DVD se pueden clasificar:
- DVD-Video: Películas (vídeo y audio).
Según su contenido:
- DVD-Audio: Audio de alta fidelidad. Por ejemplo: 24 bits por muestra, una velocidad de muestreo de 48000 Hz y un rango dinámico de 144 dB
- DVD-Data: Todo tipo de datos.
Según su capacidad de regrabado:
- DVD-ROM: Sólo lectura, manufacturado con prensa.
- DVD-R y DVD+R: Grabable una sola vez. La diferencia entre los tipos +R y -R radica en la forma de grabación y de codificación de la información. En los +R los agujeros son 1 lógicos mientras que en los –R los agujeros son 0 lógicos.
- DVD-RW y DVD+RW: Regrabable.
- DVD-RAM: Regrabable de acceso aleatorio. Lleva a cabo una comprobación de la integridad de los datos siempre activa tras completar la escritura.
- DVD+R DL: Grabable una sola vez de doble capa
- El DVD-ROM almacena desde 4,7 GB hasta 17 GB.
- DVD-5: una cara, capa simple; 4,7 GB o 4,38 GiB - Discos DVD±R/RW.
- DVD-9: una cara, capa doble; 8,5 GB o 7,92 GiB - Discos DVD+R DL. La grabación de doble capa permite a los discos DVD-R y los DVD+RW almacenar significativamente más datos, hasta 8,5 GB por disco, comparado con los 4,7 GB que permiten los discos de una capa
DISCO DURO
DISCO DURO:
En informática, un disco duro o disco rígido (en inglés Hard Disk Drive, HDD) es un dispositivo de almacenamiento de datos no volátil que emplea un sistema de grabación magnética para almacenar datos digitales. Se compone de uno o más platos o discos rígidos, unidos por un mismo eje que gira a gran velocidad dentro de una caja metálica sellada. Sobre cada plato, y en cada una de sus caras, se sitúa un cabezal de lectura/escritura que flota sobre una delgada lámina de aire generada por la rotación de los discos.
El primer disco duro fue inventado por IBM en 1956. A lo largo de los años, los discos duros han disminuido su precio al mismo tiempo que han multiplicado su capacidad, siendo la principal opción de almacenamiento secundario para PC desde su aparición en los años 60. Los discos duros han mantenido su posición dominante gracias a los constantes incrementos en la densidad de grabación, que se ha mantenido a la par de las necesidades de almacenamiento secundario.
Los tamaños también han variado mucho, desde los primeros discos IBM hasta los formatos estandarizados actualmente: 3,5" los modelos para PCs y servidores, 2,5" los modelos para dispositivos portátiles. Todos se comunican con la computadora a través del controlador de disco, empleando una interfaz estandarizado. Los más comunes hoy día son IDE (también llamado ATA o PATA), SCSI (generalmente usado enservidores y estaciones de trabajo), Serial ATA y FC (empleado exclusivamente en servidores).
ESTRUCTURA FISICA:
Dentro de un disco duro hay uno o varios discos (de aluminio o cristal) concéntricos llamados platos (normalmente entre 2 y 4, aunque pueden ser hasta 6 ó 7 según el modelo), y que giran todos a la vez sobre el mismo eje, al que están unidos. El cabezal (dispositivo de lectura y escritura) está formado por un conjunto de brazos paralelos a los platos, alineados verticalmente y que también se desplazan de forma simultánea, en cuya punta están las cabezas de lectura/escritura. Por norma general hay una cabeza de lectura/escritura para cada superficie de cada plato. Los cabezales pueden moverse hacia el interior o el exterior de los platos, lo cual combinado con la rotación de los mismos permite que los cabezales puedan alcanzar cualquier posición de la superficie de los platos..
Cada plato posee dos caras, y es necesaria una cabeza de lectura/escritura para cada cara. Si se observa el esquema Cilindro-Cabeza-Sector de más abajo, a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene 2 cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay 8 cabezas para leer 4 platos, aunque por cuestiones comerciales, no siempre se usan todas las caras de los discos y existen discos duros con un número impar de cabezas, o con cabezas deshabilitadas. Las cabezas de lectura/escritura nunca tocan el disco, sino que pasan muy cerca (hasta a 3 nanómetros), debido a una finísima película de aire que se forma entre éstas y los platos cuando éstos giran (algunos discos incluyen un sistema que impide que los cabezales pasen por encima de los platos hasta que alcancen una velocidad de giro que garantice la formación de esta película). Si alguna de las cabezas llega a tocar una superficie de un plato, causaría muchos daños en él, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7.200 revoluciones por minuto se mueve a 129 km/h en el borde de un disco de 3,5 pulgadas).
- Plato: cada uno de los discos que hay dentro del disco duro.Hay varios conceptos para referirse a zonas del disco:
- Cara: cada uno de los dos lados de un plato.
- Cabeza: número de cabezales.
- Pistas: una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
- Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
- Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes, aunque próximamente serán 4 KiB. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología ZBR (grabación de bits por zonas) que aumenta el número de sectores en las pistas exteriores, y utiliza más eficientemente el disco duro.
El primer sistema de direccionamiento que se usó fue el CHS (cilindro-cabeza-sector), ya que con estos tres valores se puede situar un dato cualquiera del disco. Más adelante se creó otro sistema más sencillo: LBA (direccionamiento lógico de bloques), que consiste en dividir el disco entero en sectores y asignar a cada uno un único número. Éste es el que actualmente se usa.
CLASIFICACION:
Si hablamos de disco duro podemos citar los distintos tipos de conexión que poseen los mismos con la placa base, es decir pueden serSATA, IDE, SCSI o SAS:
- IDE: Integrated Device Electronics ("Dispositivo electrónico integrado") o ATA (Advanced Technology Attachment), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) Hasta aproximadamente el 2004, el estándar principal por su versatilidad y asequibilidad. Son planos, anchos y alargados.
- SCSI: Son interfaces preparadas para discos duros de gran capacidad de almacenamiento y velocidad de rotación. Se presentan bajo tres especificaciones: SCSI Estándar (Standard SCSI), SCSI Rápido (Fast SCSI) y SCSI Ancho-Rápido (Fast-Wide SCSI). Su tiempo medio de acceso puede llegar a 7 milisegundos y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbps en los discos SCSI Estándares, los 10 Mbps en los discos SCSI Rápidos y los 20 Mbps en los discos SCSI Anchos-Rápidos (SCSI-2). Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy-chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que posibilita una mayor velocidad de transferencia.
- SATA (Serial ATA): El más novedoso de los estándares de conexión, utiliza un bus serie para la transmisión de datos. Notablemente más rápido y eficiente que IDE. Existen tres versiones, SATA 1 con velocidad de transferencia de hasta 150 MB/s (hoy día descatalogado), SATA 2 de hasta 300 MB/s, el más extendido en la actualidad; y por último SATA 3 de hasta 600 MB/s el cual se está empezando a hacer hueco en el mercado. Físicamente es mucho más pequeño y cómodo que los IDE, además de permitir conexión en caliente.
- SAS: (Serial Attached SCSI): Interfaz de transferencia de datos en serie, sucesor del SCSI paralelo, aunque sigue utilizando comandosSCSI para interaccionar con los dispositivos SAS. Aumenta la velocidad y permite la conexión y desconexión en caliente. Una de las principales características es que aumenta la velocidad de transferencia al aumentar el número de dispositivos conectados, es decir, puede gestionar una tasa de transferencia constante para cada dispositivo conectado, además de terminar con la limitación de 16 dispositivos existente en SCSI, es por ello que se vaticina que la tecnología SAS irá reemplazando a su predecesora SCSI. Además, el conector es el mismo que en la interfaz SATA y permite utilizar estos discos duros, para aplicaciones con menos necesidad de velocidad, ahorrando costes. Por lo tanto, las unidades SATA pueden ser utilizadas por controladoras SAS pero no a la inversa, una controladora SATA no reconoce discos SAS.
MEMORIA ROM
MEMORIA ROM:
a memoria de sólo lectura, conocida también como ROM (acrónimo en inglés de read-only memory), es un medio de almacenamiento utilizado en ordenadores y dispositivos electrónicos, que permite sólo la lectura de la información y no su escritura, independientemente de la presencia o no de una fuente de energía.
Los datos almacenados en la ROM no se pueden modificar, o al menos no de manera rápida o fácil. Se utiliza principalmente para contener el firmware (programa que está estrechamente ligado a hardware específico, y es poco probable que requiera actualizaciones frecuentes) u otro contenido vital para el funcionamiento del dispositivo, como los programas que ponen en marcha el ordenador y realizan los diagnósticos.
PROM:
Es una memoria digital donde el valor de cada bit depende del estado de un fusible (o antifusible), que puede ser quemado una sola vez. Por esto la memoria puede ser programada (pueden ser escritos los datos) una sola vez a través de un dispositivo especial, un programador PROM. Estas memorias son utilizadas para grabar datos permanentes en cantidades menores a las ROMs, o cuando los datos deben cambiar en muchos o todos los casos.
Pequeñas PROM han venido utilizándose como generadores de funciones, normalmente en conjunción con un multiplexor. A veces se preferían a las ROM porque son bipolares, habitulamente Schottky, consiguiendo mayores velocidades.
Una PROM común se encuentra con todos los bits en valor 1 como valor por defecto de las fábricas; el quemado de cada fusible, cambia el valor del correspondiente bit a 0. La programación se realiza aplicando pulsos de altos voltajes que no se encuentran durante operaciones normales (12 a 21 voltios). El término Read-only (sólo lectura) se refiere a que, a diferencia de otras memorias, los datos no pueden ser cambiados (al menos por el usuario final).Una vez programada, una EPROM se puede borrar solamente mediante exposición a una fuerte luz ultravioleta. Esto es debido a que los fotonesde la luz excitan a los electrones de las celdas provocando que se descarguen. Las EPROMs se reconocen fácilmente por una ventana transparente en la parte alta del encapsulado, a través de la cual se puede ver el chip de silicio y que admite la luz ultravioleta durante el borrado.
Como el cuarzo de la ventana es caro de fabricar, se introdujeron los chips OTP (One-Time Programmable, programables una sola vez). La única diferencia con la EPROM es la ausencia de la ventana de cuarzo, por lo que no puede ser borrada. Las versiones OTP se fabrican para sustituir tanto a las EPROMs normales como a las EPROMs incluidas en algunos microcontroladores. Estas últimas fueron siendo sustituidas progresivamente por EEPROMs (para fabricación de pequeñas cantidades donde el coste no es lo importante) y por memoria flash (en las de mayor utilización).
Una EPROM programada retiene sus datos durante diez o veinte años, y se puede leer un número ilimitado de veces. Para evitar el borrado accidental por la luz del sol, la ventana de borrado debe permanecer cubierta. Las antiguas BIOS de los ordenadores personales eran frecuentemente EPROMs y la ventana de borrado estaba habitualmente cubierta por una etiqueta que contenía el nombre del productor de la BIOS, su revisión y una advertencia de copyright.
martes, 9 de agosto de 2011
MEMORIA RAM:
Es la memoria desde donde el procesador recibe las instrucciones y guarda los resultados.
Es la memoria desde donde el procesador recibe las instrucciones y guarda los resultados.
La expresión memoria RAM se utiliza frecuentemente para referirse a los módulos de memoria que se usan en los computadores personales y servidores. En el sentido estricto, los módulos de memoria contienen un tipo, entre varios de memoria de acceso aleatorio, ya que las ROM, memorias Flash, caché (SRAM), los registros en procesadores y otras unidades de procesamiento también poseen la cualidad de presentar retardos de acceso iguales para cualquier posición. Los módulos de RAM son la presentación comercial de este tipo de memoria, que se compone de circuitos integrados soldados sobre un circuito impreso, en otros dispositivos como las consolas de videojuegos, esa misma memoria va soldada sobre la placa principal.
Su capacidad se mide en bytes, y dada su naturaleza siempre binaria, sus múltiplos serán representados en múltiplos binarios tales como Kilobyte, Megabyte, Gigabyte... y así sucesivamente.
Términos técnicos de Memoria:
- TIEMPO DE REFRESCO O LATENCIA: El refresco o latencia es el tiempo en que carga en recargar eléctricamente las celdas de memoria. SDRAM DDR 2,4 V. Voltaje 3,3 voltios.
- TIEMPO DE ACCESO: Es el tiempo requerido o necesario que se necesita desde que se lanza la operación de lectura o escrito en la memoria, el instante que se dispone a la información buscada. También tiempo que se solicita a la memoria para poder ejecutar cualquier operación específica.
- BUFFER DE DATOS: Es el espacio de memoria, en el que almacenamos datos que el programa o recurso que los requiere, ya sea software o hardware, se quede en algún momento sin datos. La paridad es un método de codificación que comprende: recibir bits de información, y generar,Se utiliza para detectar, y corregir errores en la transmisión.
- PARIDAD: Las hay de dos tipos; con paridad que es cuando compara cada byte antes y después de pasar por la DRAM, si se detecta un error esta informacion se pierde y se vuelve a repetir el proceso sin saber en donde ocurrio el error, al contrario de las que no tienen paridad ya que estas procesan la informacion como si no hubiera pasado nada aun teniendo errores en la información.
Tipos de Memoria RAM
- SÍNCRONAS: Es cuando tiene mayor rendimiento, pues no se producirán 'cuellos de botella' entre microprocesador y memoria, a medida que se acceden a los datos el microprocesador los procesa.
- ASÍNCRONAS: Cuando la memoria RAM no permite trabajar a la misma velocidad con el FSB y cuando esto sucede se da la relación conveniente la cual es FSB/MEM.
MODULOS DE MEMORIA RAM:
- DIP: Es un circuito integrado electrónico compuesto por un conjunto de componentes conectados entre si e incluidos en una placa de silicio de menos 1 mm, formando un conjunto en miniatura capaz de desarrollar las mismas funciones que un circuito formados por elementos discretos
- SIPP: Es un circuito impreso o modulo, en el cual se montan varios (chips) de memoria RAM, con una distribución de pines correlativos. Es alargado y tiene alrededor de 30 pines, estos encajan en las ranuras de la placa base y su ministran 4 bits por modulo.
- SIMM: Es un tipo de encapsulado compacto en una pequeña placa de circuito impreso que almacena chips de memoria en la que se encajan en un zócalo SIMM sobre la placa base, sus zócalos son blancos.
- DIMM: Se trata de un pequeño circuito impreso que contiene chips de memoria y se coloca directamente en ranuras de la placa madre, se usa en un conector de 168 contactos y sus zócalos generalmente son negros.
- RIMM: Denomina al patrón de la RAM que utilizan una tecnología denominada RDRAM y debido a sus altas frecuencias de trabajo requieren de difusores de calor consistentes en una placa metálica que recubre los (chips) del módulo.
MICROPROCESADOR:
El procesador es un circuito integrado constituido por millones de componentes electrónicos integrados. Constituye la unidad central de procesamiento (CPU) de un PC catalogado como microcomputador.
El microprocesador, o simplemente procesador, es el circuito integrado central y más complejo de una computadorau ordenador; a modo de ilustración, se le suele asociar por analogía como el "cerebro" de una computadora.
Desde el punto de vista funcional es, básicamente, el encargado de realizar toda operación aritmético-lógica, de control y de comunicación con el resto de los componentes integrados que conforman un PC, siguiendo el modelo base de Von Neumann. También es el principal encargado de ejecutar los programas, sean de usuario o de sistema; sólo ejecuta instrucciones programadas a muy bajo nivel, realizando operaciones elementales, básicamente, las aritméticas y lógicas, tales como sumar, restar, multiplicar, dividir, las lógicas binarias y accesos a memoria.
El microprocesador está conectado, generalmente, mediante un zócalo específico a la placa base. Normalmente para su correcto y estable funcionamiento, se le adosa un sistema de refrigeración, que consta de un disipador de calor fabricado en algún material de alta conductividad térmica, como cobre o aluminio, y de uno o más ventiladores que fuerzan la expulsión del calor absorbido por el disipador; entre éste último y la cápsula del microprocesador suele colocarse pasta térmicapara mejorar la conductividad térmica. Existen otros métodos más eficaces, como la refrigeración líquida o el uso de células peltier para refrigeración extrema, aunque estas técnicas se utilizan casi exclusivamente para aplicaciones especiales, tales como en las prácticas de overclocking.
La "velocidad" del microprocesador suele medirse por la cantidad de operaciones por ciclo de reloj que puede realizar y en los ciclos por segundo que este último desarrolla, o también en MIPS. Está basada en la denominada frecuencia de reloj (oscilador). La frecuencia de reloj se mide hercios, pero dada su elevada cifra se utilizan múltiplos, como el megahercio o el gigahercio.
En un microprocesador se puede diferenciar diversas partes:
- Encapsulado: es lo que rodea a la oblea de silicio en si, para darle consistencia, impedir su deterioro (por ejemplo, por oxidación por el aire) y permitir el enlace con los conectores externos que lo acoplaran a su zócalo a su placa base.
- Memoria cache: es una memoria ultrarrápida que emplea el micro para tener a alcance directo ciertos datos que "predeciblemente" serán utilizados en las siguientes operaciones, sin tener que acudir a la memoria RAM, reduciendo así el tiempo de espera para adquisición de datos. Todos los micros compatibles con PC poseen la llamada cache interna de primer nivel o L1; es decir, la que está dentro del micro, encapsulada junto a él.incluyen también en su interior otro nivel de caché, más grande, aunque algo menos rápida, es la caché de segundo nivel o L2 e incluso los hay con memoria caché de nivel 3, o L3.
- Coprocesador: matemático: unidad de coma flotante. Es la parte del micro especializada en esa clase de cálculos matemáticos, antiguamente estaba en el exterior del procesador en otro chip. Esta parte esta considerada como una parte "lógica" junto con los registros, la unidad de control, memoria y bus de datos.
- Registros: son básicamente un tipo de memoria pequeña con fines especiales que el micro tiene disponible para algunos usos particulares. Hay varios grupos de registros en cada procesador. Un grupo de registros esta diseñado para control del programador y hay otros que no son diseñados para ser controlados por el procesador pero que la CPU los utiliza en algunas operaciones, en total son treinta y dos registros.
- Memoria: es el lugar donde el procesador encuentra las instrucciones de los programas y sus datos. Tanto los datos como las instrucciones están almacenados en memoria, y el procesador las accede desde allí. La memoria es una parte interna de la computadora y su función esencial es proporcionar un espacio de almacenamiento para el trabajo en curso.
- Puertos: es la manera en que el procesador se comunica con el mundo externo. Un puerto es análogo a una línea de teléfono. Cualquier parte de la circuitería de la computadora con la cual el procesador necesita comunicarse, tiene asignado un "número de puerto" que el procesador utiliza como si fuera un número de teléfono para llamar circuitos o a partes especiales.
CLASES DE CAPSULADOS:
Encapsulados más importantes:
DIP (Dual in-line package).
PGA (Pin grid array).
QFP (Quad Flat Package).
LQFP (Low-profile Quad Flat Package).
PLCC (Plastic Leaded Chip Carrier).
Buses
Buses de direcciones: Es un canal que tiene el microprocesador totalmente autónomo del bus de datos donde se realiza la dirección de memoria del dato. Consiste en un grupo de líneas eléctricas para formar una dirección. Las direcciones son formadas por la CPU, quien es el que decide que dato se debe utilizar en cada momento.
Buses de datos: Es un sistema digital que envía o transfiere datos entre los dispositivos de una computadora. Está constituido por cables o pistas en un circuito impreso, los cuales cada conductor tiene una conexión únicamente en puertos de entrada y salida para cada dispositivo.
Buses de control: Es el que administra el uso y acceso a las líneas de datos y de dirección, como están compartidas con todos los dispositivos tiene que suministrarse con mecanismos que controlen su uso. Las señales de control envían órdenes como información de temporización.
FUNCIONAMIENTO:
Desde el punto de vista lógico, singular y funcional, el microprocesador está compuesto básicamente por: varios registros, una unidad de control, una unidad aritmético-lógica, y dependiendo del procesador, puede contener una unidad en coma flotante.
El microprocesador ejecuta instrucciones almacenadas como números binarios organizados secuencialmente en la memoria principal. La ejecución de las instrucciones se puede realizar en varias fases:
- PreFetch, pre lectura de la instrucción desde la memoria principal.
- Fetch, envío de la instrucción al decodificador
- Decodificación de la instrucción, es decir, determinar qué instrucción es y por tanto qué se debe hacer.
- Lectura de operandos (si los hay).
- Ejecución, lanzamiento de las máquinas de estado que llevan a cabo el procesamiento.
- Escritura de los resultados en la memoria principal o en los registros.
Cada una de estas fases se realiza en uno o varios ciclos de CPU, dependiendo de la estructura del procesador, y concretamente de su grado de segmentación. La duración de estos ciclos viene determinada por la frecuencia de reloj, y nunca podrá ser inferior al tiempo requerido para realizar la tarea individual (realizada en un solo ciclo) de mayor coste temporal. El microprocesador se conecta a un circuito PLL, normalmente basado en un cristal de cuarzo capaz de generar pulsos a un ritmo constante, de modo que genera varios ciclos (o pulsos) en un segundo. Este reloj, en la actualidad, genera miles de MHz. Un microprocesador es un sistema abierto con el que puede construirse un computador con las características que se desee acoplándole los módulos necesarios.
JUMPER:
un jumper o puente es un elemento que permite interconectar dos terminales de manera temporal sin tener que efectuar una operación que requiera una herramienta adicional. Dicha unión de terminales cierra el circuito eléctrico del que forma parte.
Caracteristicas:
El modo de funcionamiento del dispositivo, que es lo opuesto a la configuración por software, donde de distinto modo se llega al mismo resultado: cambiar la configuración, o modo de operación del dispositivo.
Porque no tendrían definido el rol de cada uno ("maestro" o "esclavo").La principal dificultad al hacer la configuración, es la información del fabricante del dispositivo, que en algunos casos, está solamente en el manual de operación del mismo o algunas veces, con su leyenda respectiva impresa en la placa de circuito impreso donde está montado el jumper.Sin los jumpers, los discos duros, las unidades de discos ópticos o las disqueteras, no funcionarían.
Usos:
Una de sus aplicaciones más habituales se encuentra en unidades IDE (discos duros y unidades de discos ópticos), donde se emplean para distinguir entre el dispositivo "maestro" y el "esclavo". También se usan para definir la tensión y la velocidad del microprocesador (ej. el multiplicador del front-side bus), así como para borrar la configuración del BIOS, quitando durante unos segundos el jumper.
Tipos:
JUMPER CLRTC
Cumple la función de Resetear la memoria RAM (esta es una memoria especial para el BIOS no confundir con la memoria RAM que se inserta en los slot Dimm), por ejemplo cuando no tenemos el password del SetUp, de esta manera podemos borra el password pudiendo acceder nuevamente, pero deberemos reconfigurar el BIOS. Lo que hace es detener el RTC (Reloj de Tiempo Real)por falta de tencion, produciendo una pérdida de datos.
Cumple la función de Resetear la memoria RAM (esta es una memoria especial para el BIOS no confundir con la memoria RAM que se inserta en los slot Dimm), por ejemplo cuando no tenemos el password del SetUp, de esta manera podemos borra el password pudiendo acceder nuevamente, pero deberemos reconfigurar el BIOS. Lo que hace es detener el RTC (Reloj de Tiempo Real)por falta de tencion, produciendo una pérdida de datos.
corresponde a la tensión que queda presente al suspender o apagar nuestra PC, de modo que al querer restablecerla o encenderla parte del circuito electrónico del motherboard este alimentado con las tenciones mínimas indispensables, por ejemplo en el caso de suspenderla en la memoria RAM que almacena los datos (Textos, programas, Juegos, Etc.) que el usuario estaba ejecutando antes pasar al modo Suspensión. De esta manera estaríamos ahorrando energía y a la vez alargamos la vida útil de nuestra computadora.
JUMPER USBPWR:
Estos Jumpers corresponden a los puertos USB, al igual que KBPWR se utiliza para despertar nuestra PC del modo Sleep.
JUMPER AUDIO_EN:
Este jumper nos permite configurar Entre la tarjeta de audio incorporada en el motherboard en la configuración enable pin 2-3 (Default) o instalar una tarjeta en el slot de expansión PCI con una configuración Disable Pin 1-2. En algunos motherboard esta configuración se realiza directamente en el BIOS.
Los Jumpers BCS nos permiten configurar nuestra placa de audio en 4 o 6 salidas, utilizando las entradas MIC y AUX para tal fin. En la posición 1-2 configuramos 6 salidas y en 2-3 4 salidas. Dependiendo el modelo y marca de motherboard esta configuración se podrá realizar directamente en el SetUp.
Suscribirse a:
Entradas (Atom)